Dihadron correlation in Au+Au collision at 200 GeV: jet quenching and medium response

arxiv:0801.4545 [nucl-ex] arxiv:0705.3238 [nucl-ex] Phys.Rev.C77:011901,2008.

Jiangyong Jia

Chemistry Department, Stony Brook University

Importance of p_T scan • High p_T: Jet dominated Low p_m: Bulk dominated Dihadron picks up jet signal, so can quantify jet contribution at low p_T (hard and p_T scan: Evolution of jet fragmentation and medium response Hard region (jet) Flow+Recombination å Jet fragmentation рт Many different ways of mapping out the transition Some technical details yield (PTY), hadron-pair yield (JPY) PTY = JPY/N_{trig}, Both the expected JPY and number of triggers (N_{trig}) scale with Ncoll.

- Quantify the medium modification
- ${}^{\circ}$ R_{AA}= singleyield_{AA} (singleyield_{pp} Ncoll) -modification of single particle y ${}^{\bullet}$ J_{AA} = JPY_{AA} (JPY_{pp} Ncoll) -modification of jet-induced two particle yield ${}^{\bullet}$ I_{AA} = PTY_{AA}/PTY_{pp} modification of conditional (per-trigger) yield

 $JPY(p_T^a, p_T^b) = PTY(p_T^a, p_T^b) \frac{dN^a}{N - dv^a} = PTY(p_T^b, p_T^a) \frac{dN^a}{N}$

 $J_{AA}(p_T^a, p_T^b) = I_{AA}(p_T^a, p_T^b)R_{AA}(p_T^a) = I_{AA}(p_T^b, p_T^a)R_{AA}(p_T^b)$

Jet Shapes

Two fitting method is used to determine location of shoulder $G_{int}^{1} = G_1(\Delta \phi) + G_2(\Delta \phi - \pi + D) + G_2(\Delta \phi - \pi - D) + \kappa$

Assuming only medium response (shoulder component) for the a $Y_{i_{\alpha_1, i_{\alpha_2}, i_{\alpha_3}}}^{FIT1} = G_1(\Delta \phi) + G_2(\Delta \phi - \pi + D) + G_2(\Delta \phi - \pi - D) + G_2(\Delta \phi - \pi) + \kappa$ Assuming both jet and medium component for the away-side

G1 — nearside iet. G2 — shoulder component. G3 — head component

The shoulder is located around 1-1.2 rad, may depends slightly on the p_T

Jet Hadron-Pair Yields

centrality dependence in this p_T bin shows A fast drop at Npart<80, but slowly satu

around 0.5 at Npart>200

Pair yield (JPY) scales with Ncoll. Its modification is quantified by J_{AA} $J_{AA}(p_T^a, p_T^b) = I_{AA}(p_T^a, p_T^b)R_{AA}(p_T^a)$ = $I_{AA}(p_T^b, p_T^a)R_{AA}(p_T^b)$ J_{AA}, I_{AA} and R_{AA} are related:

 $J_{AA}(p_T^a, p_T^b, \Delta \phi) = \frac{JPY^{A+A}}{\langle N_{coll} \rangle JPY^{p+p}}$

High p_T corrrelation: Per-trigger yield effectively represent per-jet yield, PTY and I_{AA} is more robust Low p_T correlation: jet fragmentation is not the only sources of triggers, JPY and $J_{\Delta\Delta}$ is more robust

Near-side J_{AA} scales with $p_T^{sum} = p_T^a + p_T^b$

- Nearside pairs come from same jet, p_T^{sum} is a good proxy for original jet energy R_{AA} at large p_T^{su}
- sion of J_{AA} represent the suppression of jet-induced contribution from same jets.

Away-side $J_{AA} \sim R_{AA}^2$ (within large errors) at large

Suggests that the suppression of away-side jets (I_{AA}) is similar to that for inclusive jets (RAA)

Correlation Landscape in $p_T^a \times p_T^b \times \Delta \phi$

Relative to pp, away-side Au+Au data show substantial modification with p_T^a and p_T^b.

- · Soft region: broad and flat distribution
- · Hard region: peaked like p+p
- In between: peaks at $\Delta \phi = \pi \pm 1.1$ with local minimum at π.

Suggests a two component interpretation • A suppressed jet component around π · An enhanced medium component around $\pi\pm1.1$.

Significant modifications on the near side as well. Which can also be interpreted as sum of jet and medium component (ridge)

The evolution pattern suggests three distinct Δφ regions

- •NearRegion (|Δφ|<π/3)
 Jet+ ridge
- •HeadRegion (|Δφ-π|<π/6)
- Jet suppression
- •ShoulderRegion $(\pi/6 < |\Delta \phi \pi| < \pi/3)$ Response of the medium

We quantify the near-side shape and yield in these three $\Delta\phi$ regions

Jet Per-trigger Yields

Quantify the modification relative to pp via IAA

 $I_{AA}(p_T^a, p_T^b) = \frac{Y_{\text{jet,ind}}^{A+A}(p_T^a, p_T^b)}{Y_{\text{jet,ind}}^{p+p}(p_T^a, p_T^b)}$

- •SR exhibit early onset of suppression—jet quenching •H+S (entire away-side) relative to SR exhibit overall
- enhancement enhancement due to medium respon •High p_T trigger results are consistent with jet quenching
- •HR contains significant feedin from SR

3.0cp.4c4.0 GeV/c

Note soft trigger (2-3 and 3-4 GeV/c) have apparent stronger suppression than hard triggers(4-5 and 5-10GeV/c) at large $p_T^{\ b}$. This is due to a dilution effects of soft triggers, which is enhanced by soft processes at intermediate p_T (2-4 GeV/c). This is also indicated by

a suppression of near-side I_{AA} and can be seen directly from the near-side $\Delta \phi$ distribution More discussion in poster .

6 (GeVic) •Near-side: flat with Npart (>100), increase with p_T^a —Jet fragmentation

•Shoulder region: flat with Npart (>100) , independent of p_T^a —Universal slope, reflects property of the medium?

•Head region: drops with Npart – suppression

increases with pra-punch-through jets

Away-side modification are sensitive to p_T and $\Delta \varphi$ range. Thus a flat Npart dependence does not necessarily mean jet is not modified. A full p_T and $\Delta \varphi$ survey is important!!

Summary

1)The evolution of the jet shape and yield with pt seems to suggest four distinct contributions to jet-induced pairs: 1) a jet fragmentation component around $\Delta \phi {\sim} 0$, component around $\Delta \phi {\sim} 0$, and 4) a mediu ent around $\Delta\phi$ -0 , 2) a punch-through jet fragmentation component around $\Delta\phi$ - π , 3) a medium-induced 0, and 4) a medium-induced components around $\Delta\phi$ - π ±1.1.

2) The fact that both near- and away-side distributions are enhanced and broadened at low pt and that the modifications limited to $p_T < 4$ GeV/c, above which the jet characteristics qualitatively approach jet fragmentation, may suggest that the modifications echanisms for the near- and away-side are related.

Model comparisons

1) If jets are generated close to the surface, they exit and subsequently fragment outside the medium (surface emission or punch-through as in Renk:2006pk,Zhang:2007ja). Otherwise they lose energy by radiating gluons. These shower gluons may be emitted at large angles relative to the original partons (Vitev:2005yg,Polosa:2006hb) and fragment into hadrons, or they can be deflected to large angles by interactions with medium, including medium deflection in the azimuthal{Chiu:2006pu,Armesto:2004pt} and the beam directions [Majumder:2006wi] or excitation of collective Mach shock[Stoecker:2004qu, Casalderrey-Solana:2004qm].

2) However, many of these models are either qualitative in nature or they focus on subset of the dijet observables (jet shape or yield, near- or away-side, high p_T or low p_T). A model framework including both jet quenching and medium response, which ca describe the full p_T evolution of the jet shapeand yield at both near- and away-side is required to understand the parton-medium interactions. Our data provide valuable guidance for such future model developments.